Using State Space Encoding To Counter Biased Fault Attacks on AES Countermeasures
نویسندگان
چکیده
Biased fault attacks such as the Differential Fault Intensity Analysis (DFIA) have been a major threat to cryptosystems in recent times. DFIA combines principles of side channel analysis and fault attacks to try and extract the key using faulty ciphertexts only. Biased fault attacks have also been shown to weaken traditional redundancy based countermeasures, such as Concurrent Error Detection (CED) techniques, that provide security against classical fault attacks such as Differential Fault Analysis (DFA). While these countermeasures are effective under the assumption that the adversary uses a uniform fault model, they are vulnerable to attacks using biased fault models. Till date, no effective countermeasure against such biased fault attacks has been reported in literature. In this work, we propose a countermeasure strategy that combines the principles of redundancy with that of fault space transformation to achieve security against both classical and biased fault attacks. The novelty in the proposed countermeasure lies in the concept of transforming the fault space, that reduces the probability that the adversary can bypass the redundant checks by introducing the same fault in the original and redundant computations. All claims have been validated via practical experiments on a SASEBO GII board.
منابع مشابه
Fault Tolerant Infective Countermeasure for AES
Infective countermeasures have been a promising class of fault attack countermeasures. However, they have been subjected to several attacks owing to lack of formal proofs of security and improper implementations. In this paper, we first provide a formal information theoretic proof of security for one of the most recently proposed infective countermeasures against DFA, under the assumption that ...
متن کاملSecurity characterisation of a hardened AES cryptosystem using a laser
The AES is a standard encryption algorithm used in numerous cryptographic systems like smart cards, TPMs as well as in protocols like WPA2 or OpenSSL. Measuring the robustness of AES implementations against physical attacks is of utmost import-ance in order to guarantee the security of the system into which the AES is used. In this article, we describe how a hardware AES, embedding countermeasu...
متن کاملDestroying Fault Invariant with Randomization - A Countermeasure for AES Against Differential Fault Attacks
Researchers have demonstrated the ineffectiveness of deterministic countermeasures and emphasized on the use of randomness for protecting cryptosystems against fault attacks. One such countermeasure for AES was proposed in LatinCrypt 2012, which masks the faulty output with secret values. However this countermeasure does not affect the erroneous byte in the faulty computation of the last AES ro...
متن کاملImplementation of Combinational Logic S-Box and Its Fault Detection for Advanced Encryption Standard Algorithm
Fault attacks are going on increasing with high data transfers so powerful and efficient cryptanalysis techniques are required to reduce the fault attacks. Such a technique is Advanced Encryption Standard (AES) algorithm. These attacks are based on injecting faults into the structure of the AES to obtain the confidential information. To protect the AES implementation against these attacks, a nu...
متن کاملA Comparative Cost/Security Analysis of Fault Attack Countermeasures
Deliberate injection of faults into cryptographic devices is an effective cryptanalysis technique against symmetric and asymmetric encryption algorithms. To protect cryptographic implementations (e.g. of the recent AES which will be our running example) against these attacks, a number of innovative countermeasures have been proposed, usually based on the use of space and time redundancies (e.g....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015